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Abstract

Let Gn denote either the group Sp(n, F ) or SO(2n + 1, F ) over
a local non-archimedean field F . We explicitly determine the Aubert
duals of strongly positive discrete series representations of the group
Gn. This enables us to construct a large class of unitarizable repre-
sentations of this group.

1 Introduction

Let F denote a local non-archimedean field and let Gn stand for either the
group Sp(n, F ) or SO(2n+ 1, F ) over F . A crucial role in the classification
of the unitary dual of Gn is played by the determination of unitarizable non-
tempered irreducible representations in terms of the Langlands classification
and tempered representations. There are very few methods known for ob-
taining the unitarizabile non-tempered representations, and in this paper we
will construct a class of such representations using the Aubert involution.

This involution has been introduced for general reductive p-adic groups
in [2] and presents a certain generalization of involutions on Grothendieck
groups of smooth finite length representations of p-adic groups, studied by
Zelevinsky, Schneider-Stuhler and many others.

Particulary interesting conjecture regarding the Aubert involution states
that it preserves unitarity. This conjecture is still largely unsolved, but there
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are some important case that have been established. In particular, it has
been proved by Hanzer in [4] that the Aubert dual of a strongly positive
discrete series is unitarizable. We note that strongly positive representations
present a special class of irreducible square-integrable representations and
serve as a cornerstone in constructions of discrete series ([9]). An algebraic
classification of strongly positive discrete series, which holds in a classical
group case, is also given in [5].

Methods used in ([4]) are based on the precise analysis of the ends of the
complementary series and calculation of the signature of involved hermitian
forms, and no attempt to obtain an explicit description of the structure of
studied Aubert duals has been made. Thus, the first purpose of this paper
is to obtain such a description.

An algorithm for the determination of the Aubert duals of representa-
tions of GL(n, F ) is given in [10], and that algorithm might also have an
application in determination of the Aubert duals of strongly positive discrete
series. However, we have rather chosen an approach which is completely
based on basic properties of the Aubert involution and the description of
Jacquet modules of strongly positive discrete series, obtained in [6] and [7,
Section 7].

The work of Hanzer and our description enable us to provide a construc-
tion of a rather large class of non-tempered unitarizable representations of
Gn.

We emphasize that our construction also gives the characterization of all
irreducible representations π of Gn such that for every embedding

π ↪→ νa1ρ1 × · · · × νakρk o πcusp,

where ν = | det |F , ρi is an irreducible cuspidal unitary representation of
GL(ni, F ) for i = 1, . . . , k, and πcusp is an irreducible cuspidal representation
of Gn′ , we have ai < 0 for each i.

Let us now describe the contents of the paper in more details. In the
following section we introduce some notation which will be used throughout
the paper. In the third section we provide an explicit description of the
Aubert duals of strongly positive discrete series, while in the fourth section
we show how our description can be used to construct a class of non-tempered
unitarizable representations.

This work has been supported in part by Croatian Science Foundation
under the project 9364.
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2 Preliminaries

Throughout the paper, F will denote a non-archimedean local field of char-
acteristic different than two.

Let us first recall a definition of Aubert involution and its basic properties.
For a connected reductive p-adic group G defined over F , let Σ denote

the set of roots of G with respect to fixed minimal parabolic subgroup and
let ∆ stand for a basis of Σ. For Θ ⊆ ∆, we let PΘ be the standard parabolic
subgroup of G corresponding to Θ and MΘ be the standard Levi subgroup
of G corresponding to Θ.

For a parabolic subgroup P of G with the Levi factor M and a repre-
sentation σ of M , we denote by iM(σ) a normalized parabolically induced
representation of Gn induced from σ. For an admissible finite length repre-
sentation σ of G, the normalized Jacquet module of σ with respect to the
standard parabolic subgroup having Levi factor equal to M will be denoted
by rM(σ). We recall the following definition and results from [2, 3]:

Theorem 2.1. Define the operator on the Grothendieck group of admissible
representations of finite length of G by

DG =
∑
Θ⊆∆

(−1)|−Θ|iMΘ
◦ rMΘ

.

Operator DG has the following properties:

1. DG is an involution.

2. DG takes irreducible representations to irreducible ones.

3. If σ is irreducible cuspidal representation, then DG(σ) = (−1)|∆|σ.

4. For the standard Levi subgroup M = MΘ, we have

rM ◦DG = Ad(w) ◦Dw−1(M) ◦ rw−1(M),

where w is the longest element of the set {w ∈ W : w−1(Θ) > 0}.

We will now describe groups that we consider.
Let Jn = (δi,n+1−j)1≤i,j≤n denote an n × n matrix, where δi,n+1−j stands

for the Kronecker symbol. For a square matrix g, we denote by gt (resp., gτ )
the transposed matrix of g (resp., the transposed matrix of g with respect
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to the second diagonal). In what follows, we shall fix one of the series of
classical groups

Sp(n, F ) =

{
g ∈ GL(2n, F ) :

(
0 −Jn
Jn 0

)
gt
(

0 −Jn
Jn 0

)
= g−1

}
,

SO(2n+ 1, F ) =

{
g ∈ GL(2n+ 1, F ) : gτ = g−1

}
and denote by Gn a rank n group belonging to the series which we fixed.

If σ is an irreducible representation of Gn, we denote by σ̂ the represen-
tation ±DGn(σ), taking the sign + or − such that σ̂ is a positive element in
the Grothendieck group of admissible representations of finite length of Gn.
We call σ̂ the Aubert dual of σ.

The set of standard parabolic subgroups will be fixed in a usual way, i.e.,
we fix a minimal F -parabolic subgroup in Gn consisting of upper-triangular
matrices in the usual matrix realization of the classical group. Then the Levi
factors of standard parabolic subgroups have the form M = GL(n1, F ) ×
· · · × GL(nk, F ) × Gn′ , where GL(m,F ) denotes a general linear group of
rank m over F . If δi, i = 1, 2, . . . , k is a representation of GL(ni, F ) and if
τ a representation of Gm, then by δ1 × · · · × δk o τ we denote a normalized
parabolically induced representation of the group Gn, induced from the rep-
resentation by δ1 ⊗ · · · ⊗ δk ⊗ τ of the standard parabolic subgroup with the
Levi subgroup equal to GL(n1, F ) × · · · × GL(nk, F ) × Gm. Here n equals
n1 + n2 + · · ·+ nk +m.

The set of all irreducible admissible representations of GL(n, F ) will be
denoted by Irr(GL(n, F )), and the set of all irreducible admissible represen-
tations of Gn will be denoted by Irr(Gn).

We will denote by ν a composition of the determinant mapping with
the normalized absolute value on F . Let ρ denote an irreducible cuspidal
representation of GL(k, F ). By a segment of cuspidal representations, which
will be denoted by [ρ, νmρ], we mean the set {ρ, νρ, . . . , νmρ}. To each such
segment we attach an irreducible essentially square-integrable representation
δ([ρ, νmρ]) of GL(m · k, F ), which is a unique irreducible subrepresentation
of νmρ× · · · × νρ× ρ (here we use a well known notation for the normalized
parabolic induction for the general linear groups with the usual choice of the
standard parabolic subgroups). For integers x, y, x ≤ y, we set [x, y] = {z ∈
Z : x ≤ z ≤ y}. For irreducible essentially square-integrable representation
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δ, there is the unique e(δ) ∈ R such that ν−e(δ)δ is unitarizable. Note that
e(δ([νaρ, νbρ])) = a+b

2
, for irreducible cuspidal representation ρ.

In order to keep our results uniform, we put δ([νaρ, νbρ]) = 1 (the one-
dimensional representation of the trivial group) if y = x−1 and δ([νaρ, νbρ]) =
0 if y < x− 1.

Throughout the paper we prefer to use the subrepresentation version
of the Langlands classification and write the non-tempered representation
π ∈ Irr(Gn) as the unique irreducible (Langlands) subrepresentation of the
induced representation of the form δ1 × · · · × δk o τ , where τ ∈ Irr(Gn′) is
a tempered representation and δ1, . . . , δk are irreducible essentially square-
integrable representations such that e(δ1) ≤ · · · ≤ e(δk) < 0. In this case, we
write π = L(δ1 × · · · × δk o τ).

An irreducible representation σ of Gn is called strongly positive or a
strongly positive discrete series, if for every embedding

σ ↪→ νa1ρ1 × · · · × νakρk o σcusp,

where ρi ∈ Irr(GL(ni, F )), i = 1, . . . , k, are cuspidal unitary representations
and σcusp ∈ Irr(Gn′) is an irreducible cuspidal representation, we have ai > 0
for each i.

If σ is a strongly positive discrete series, it has been proved in [4] that σ̂
is unitarizable.

We have shown in [5] that every strongly positive discrete series repre-
sentation can be realized in a unique way (up to a certain permutation) as a
unique irreducible subrepresentation of the induced representation

( m∏
i=1

ki∏
j=1

δ([ναi−ki+jρi, ν
a
(i)
j ρi])

)
o σcusp

where ρ1, . . . , ρm are mutually non-isomorphic irreducible self-contragredient
cuspidal representations of GL(n1, F ), . . . , GL(nm, F ), σcusp is an irreducible
cuspidal representation of Sp(n′), αi > 0 such that ναiρioσcusp reduces, ki =
⌈αi⌉, where ⌈αi⌉ denotes the smallest integer which is not smaller than αi,

and, for i = 1, . . . ,m, we have −1 < a
(i)
1 < a

(i)
2 < · · · < a

(i)
ki

and a
(i)
j −αi ∈ Z,

for j = 1, . . . , ki.
We emphasize that if νxρ appears in the cuspidal support of σ then ρ is

selfcontragredient and 2x ∈ Z, by [1] and [8, Théorème 3.1.1].
Directly from Theorem 2.1 we obtain the following results, which will be

frequently used in the paper.
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Lemma 2.2. Let σ ∈ Irr(Gn) and suppose that the Jacquet module of σ̂ with
respect to the appropriate standard parabolic subgroup contains an irreducible
representation νx1ρ1 ⊗ · · · ⊗ νxmρm ⊗ σcusp, where ρ1, . . . , ρm, σcusp are irre-
ducible cuspidal representations. Then the Jacquet module of σ̂ with respect to
the appropriate standard parabolic subgroup contains ν−x1 ρ̃1⊗· · ·⊗ν−xm ρ̃m⊗
σcusp. In particular, if σ ∈ Irr(Gn) is a strongly positive discrete series and
the Jacquet module of σ̂ with respect to the appropriate parabolic subgroup
contains νx1ρ1 ⊗ · · · ⊗ νxmρm ⊗ σcusp, for irreducible cuspidal representations
ρ1, . . . , ρm, σcusp, then xi < 0 for i = 1, . . . ,m.

The following proposition presents the first step in the determination of
Aubert duals of strongly positive representations.

Proposition 2.3. Let σ ∈ Irr(Gn) denote a strongly positive discrete series
and let σcusp denote a partial cuspidal support of σ. Then σ̂ = L(δ1×· · ·×δmo
σcusp), for irreducible essentially square integrable representations δ1, . . . , δm
of general linear groups, such that e(δi) ≤ e(δi+1) < 0 for i = 1, . . . ,m− 1.

Proof. By the Langlands classification, σ̂ = L(δ1 × · · · × δm o σcusp), for
irreducible essentially square integrable representations δ1, . . . , δm of general
linear groups, such that e(δi) ≤ e(δi+1) < 0 for i = 1, . . . ,m−1, and tempered
representation τ ∈ Irr(Gn′) for some n′ ≤ n.

If τ is not isomorphic to σcusp, then there is an x ≥ 0 and a cuspidal rep-
resentation ρ ∈ Irr(GL(n1, F )) such that τ is a subrepresentation of νxρo τ ′,
for some τ ′ ∈ Irr(Gn′′). Using Frobenius reciprocity, together with transi-
tivity of Jacquet modules, we get a contradiction with the previous lemma.
This ends the proof.

We say that a representation σ ∈ Irr(Gn) belongs to the set D(ρ1, . . . , ρk;
σcusp) if every element of the cuspidal support of σ belongs to the set {νxρ1, . . .,
νxρk, σcusp : x ∈ R}, where ρ1, . . . , ρk are mutually non-isomorphic irreducible
cuspidal representations of general linear groups and σcusp is a cuspidal rep-
resentation of Gn′ , for some n′ ≤ n.

3 Aubert duals of strongly positive represen-

tations

In this section we determine Aubert duals of strongly positive discrete se-
ries. We will first consider the case of strongly positive representations con-
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tained in D(ρ; σcusp). Obviously, we can assume that ρ is an irreducible
self-contragredient representation. Also, if ρ o σcusp reduces then σcusp is
the only strongly positive representation contained in D(ρ; σcusp), so we will
assume that ναρ o σcusp reduces for α > 0. We note that such α is unique
by the results of [11].

Let k = ⌈α⌉. By [5, Section 5], the set of strongly positive discrete series
in D(ρ;σcusp) is in bijection with the set of all ordered k-tuples (a1, . . . , ak)
such that ai − α ∈ Z, for i = 1, . . . , k, and −1 < a1 < a2 < . . . < ak.
Strongly positive discrete series corresponding to such k-tuple (a1, . . . , ak)
will be denoted by σ(a1,...,ak).

If σ(a1,...,ak) is a cuspidal representation, we have ak = α+1, ai+1 = ai+1
for i = 1, . . . , k − 1, and ̂σ(a1,...,ak) = σ(a1,...,ak), so in the rest of this section
we will assume ak ≥ α. Let us define m = min{i : ai ≥ α − k + 1} and
l = k − m + 1. Then σ(a1,...,ak) is a unique irreducible subrepresentation of
the induced representation

δ([να−l+1ρ, νak−l+1ρ])× δ([να−l+2ρ, νak−l+2ρ])× · · · × δ([ναρ, νakρ])o σcusp.

By Proposition 2.3, Aubert dual of the representation σ(a1,...,ak) is of the
form L(δ1 × · · · × δs o σcusp) for irreducible essentially square-integrable rep-
resentations δ1, . . . , δs such that di ≤ di+1 < 0 for i = 1, . . . , s − 1. For
i = 1, . . . , s, we can write δi = δ([ν−xiρ, ν−yiρ]) for xi > 0 and yi > 0 such
that xi − α ∈ Z.

Obviously, the Jacquet module of σ(a1,...,ak) with respect to the appropriate
parabolic subgroup contains the irreducible representation

ν−y1ρ⊗ ν−y1−1ρ⊗ · · · ⊗ ν−x1ρ⊗ ν−y2ρ⊗ · · · ⊗ ν−xsρ⊗ σcusp.

Let i ∈ {1, . . . , s} be arbitrary but fixed. Using transitivity of Jacquet
modules and Lemma 2.2, we deduce that there is an irreducible representation
σ1 ∈ D(ρ; σcusp) such that the Jacquet module of σ(a1,...,ak) with respect to
the appropriate parabolic subgroup contains an irreducible representation

νy1ρ⊗ νy1+1ρ⊗ · · · ⊗ νx1ρ⊗ νy2ρ⊗ · · · ⊗ νxi−1ρ⊗ σ1.

It follows from [6, Lemma 3.4] that σ1 is strongly positive discrete series
and we write σ1 = σ(b1,...,bk). It can be deduced from [6, Theorem 4.6] that
bj ≤ aj for j = 1, . . . , k. Also, the Jacquet module of σ1 with respect to the
appropriate parabolic subgroup contains

νyiρ⊗ νyi+1ρ⊗ · · · ⊗ νxiρ⊗ νyi+1ρ⊗ · · · ⊗ νxsρ⊗ σcusp.
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Lemma 3.1. There is j ∈ {k− l+1, . . . , k−xi+ yi} such that yi+ r = bj+r

for r = 0, 1, . . . , xi − yi. Furthermore, if j ≥ 2 then bj ≥ bj−1 + 2.

Proof. By [6, Theorem 4.6], there is a j ∈ {k − l + 1, k} such that yi = bj
and bj ≥ bj−1+2 if j ≥ 2. Also, the Jacquet module of σ(b1,...,bi−1,bi−1,bi+1,...,bk)

with respect to the appropriate parabolic subgroup contains the irreducible
representation

νyi+1ρ⊗ · · · ⊗ νxiρ⊗ νyi+1ρ⊗ · · · ⊗ νxsρ⊗ σcusp.

Since bj+l′ ≥ bj + l′ for l′ ≥ 1, we obtain yi + 1 = bj+1 and bj+1 = bj + 1.
Repeating the same arguments, we obtain yi+r = bj+r for r = 0, 1, . . . , xi−yi
and j ≤ k − xi + yi. This ends the proof.

Lemma 3.2. For t = 1, . . . , s− 1 we have xt > xt+1.

Proof. Suppose that, contrary to our assumption, that there is t ∈ {1, . . . , s−
1} such that xt ≤ xt+1. We denote xj − yj by zj for j = 1, . . . , s. Similarly
as before, let σt ∈ D(ρ;σcusp) denote a strongly positive discrete series such
that the Jacquet module of σ(a1,...,ak) with respect to the appropriate parabolic
subgroup contains

νy1ρ⊗ νy1+1ρ⊗ · · · ⊗ νx1ρ⊗ νy2ρ⊗ · · · ⊗ νxt−1ρ⊗ σt,

and write σt = σ(b1,...,bk). By previous lemma, there is j1 ∈ {k−l+1, . . . , k−zt}
such that yt + r = bj1+r for r = 0, 1, . . . , zt.

Also, we denote by σt+1 ∈ D(ρ;σcusp) a strongly positive discrete series
such that the Jacquet module of σ(b1,...,bk) with respect to the appropriate
parabolic subgroup contains

νytρ⊗ νyt+1ρ⊗ · · · ⊗ νxtρ⊗ σt+1.

Applying [6, Theorem 4.6] several times, we deduce

σt+1 = σ(b1,...,bj1−1,bj1−1,bj1+1−1,...,bj1+zt−1,bj1+zt+1...,bk).

We note that the Jacquet module of σt+1 with respect to the appropriate
parabolic subgroup contains

νyt+1ρ⊗ νyt+1+1ρ⊗ · · · ⊗ νxt+1ρ⊗ σt+2,

for some irreducible representation σt+2 ∈ D(ρ; σcusp).
Since bj1+zt+1 − 1 > bj1+zt − 1 and xt ≤ xt+1, using Lemma 3.1 again,

we obtain yt+1 ≥ bj1+zt+1. Consequently, yt+1 > xt and e(δt) > e(δt+1), a
contradiction.
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Lemma 3.3. For t = 1, . . . , s−1 we have xt+1 = xt−1 and yt+1 < yt. Also,
x1 = ak.

Proof. Similarly as in the proof of previous lemma, for t = 1, . . . , s we denote
by σt a strongly positive discrete series such that the Jacquet module of
σ(a1,...,ak) with respect to the appropriate parabolic subgroup contains

νy1ρ⊗ νy1+1ρ⊗ · · · ⊗ νx1ρ⊗ νy2ρ⊗ · · · ⊗ νxt−1ρ⊗ σt,

and write σt = σ
(b

(t)
1 ,...,b

(t)
k )

. Obviously, b
(1)
j = aj for j = 1, . . . , k.

Since the Jacquet module of σt with respect to the appropriate parabolic
subgroup contains an irreducible representation of the form

νytρ⊗ νyt+1ρ⊗ · · · ⊗ νxtρ⊗ σ′
t,

and xt > xt+1 for t = 1, . . . , s − 1, it follows from the cuspidal support of

σ
(b

(t)
1 ,...,b

(t)
k )

that xt = b
(t)
k . In particular, x1 = ak. We also note that it can be

easily seen xs = α.
For t = 1, . . . , s, we define jt = 1 if b

(t)
j−1 = b

(t)
j − 1 for all j = 2, . . . , k and

jt = max{j : b(t)j−1 < b
(t)
j − 1} otherwise. Lemma 3.1 gives yt = b

(t)
jt
. Using [6,

Theorem 4.6], we obtain that

(b
(t+1)
1 , . . . , b

(t+1)
k ) = (b

(t)
1 , . . . , b

(t)
jt−1, b

(t)
jt

− 1, . . . , b
(t)
k − 1) (1)

holds for t = 1, . . . , s− 1. This implies xt+1 = xt − 1 for t = 1, . . . , s− 1.
From the definition of jt and (1), we deduce jt ≥ jt+1 for t = 1, . . . , s− 1.

Consequently, b
(t+1)
jt+1

≤ b
(t)
jt

− 1 and yt+1 < yt for t = 1, . . . , s − 1. This ends
the proof.

We also note a direct consequence of the proof of previous lemma.

Corollary 3.4. For i ∈ {k − l + 1, . . . , k}, let t = min{j : xj − yj + 1 ≥ i}.
Then ai = xt − i+ 1.

From previous sequence of lemmas, we obtain a description of the Aubert
dual of strongly positive representation σ(a1,...,ak). We note that for i such
that l + 1 ≤ i ≤ k we have ak−i+1 = ak−i + 1 and −ak−i+1 > −ak−i − 2.
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Theorem 3.5. The Aubert dual of the strongly positive representation σ(a1,...,ak)

is a unique irreducible subrepresentation of the induced representation

( k∏
i=1

−ak−i−2∏
j=−ak−i+1

δ([νj−i+1ρ, νjρ])
)
o σcusp,

where a0 = α− ⌈α⌉ − 1.

We will now describe our results in the general case. Let σ ∈ Irr(Gn)
denote a strongly positive discrete series and suppose that σ is contained in
D(ρ1, . . . , ρm;σcusp), with m minimal. Then each ρi is a self-contragredient
representation and, for i = 1, . . . ,m, we denote by αi a unique non-negative
real number such that ναiρi o σcusp reduces. We note that minimality of m

implies αi > 0. Also, let ki = ⌈αi⌉ and a
(i)
0 = αi − ⌈αi⌉ − 1.

By [5, Section 5], for i = 1, . . . ,m there exist a
(i)
1 , . . . , a

(i)
ki

such that −1 <

a
(i)
1 < · · · < a

(i)
ki

and a
(i)
j − αi ∈ Z for j = 1, . . . , ki, such that σ is a unique

irreducible subrepresentation of the induced representation

( m∏
i=1

ki∏
j=1

δ([ναi−ki+jρi, ν
a
(i)
j ρi])

)
o σcusp.

Since for non-isomorphic irreducible cuspidal representations ρ and ρ′ of
general linear groups and x1, x2, y1, y2 such that x1 − y1 ∈ Z and x2 − y2 ∈ Z
we have δ([νx1ρ, νy1ρ])×δ([νx2ρ′, νy2ρ′]) ∼= δ([νx2ρ′, νy2ρ′])×δ([νx1ρ, νy1ρ]), we
can repeat the same arguments as in D(ρ;σcusp) case to obtain a description
of the Aubert dual of σ.

Theorem 3.6. The Aubert dual of the strongly positive representation σ is
a unique irreducible subrepresentation of the induced representation

( m∏
i=1

ki∏
l=1

−a
(i)
ki−l−2∏

j=−a
(i)
ki−l+1

δ([νj−l+1ρ, νjρ])

)
o σcusp.

4 A class of unitarizable representations

We will now use a description obtained in the previous section and results
of Hanzer ([4]) to construct a large class of non-tempered unitarizable repre-
sentations of the group Gn.
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Theorem 4.1. Suppose that σcusp ∈ Irr(G′
n) is a cuspidal representation

and let s be a positive integer. Let ρt ∈ Irr(GL(nt, F )), t = 1, . . . , s, be
mutually non-isomorphic cuspidal self-contragredient representations. For
t = 1, . . . , s, let αt ≥ 0 be such that the induced representation ναtρt o σcusp

reduces. For t = 1, . . . , s, let mt denote a non-negative integer and suppose
that (b

(t)
1 , . . . , b

(t)
mt) is an ordered mt-tuple of real numbers such that −αt −

mt + 1 ≤ b
(t)
1 < · · · < b

(t)
mt < 0 and b

(t)
i − αt ∈ Z for i = 1, . . . ,mt. Then the

induced representation( s∏
t=1

0∏
i=−mt+1

δ([ν−αt+iρt, ν
b
(t)
mt+iρt])

)
o σcusp (2)

has a unique irreducible subrepresentation, which is unitarizable.

Proof. It is a direct consequence of the subrepresentation version of the Lang-
lands classification that the induced representation (2) has a unique irre-
ducible subrepresentation, which will be denoted by σ. For i = 1, . . . , s, let
kt = ⌈αt⌉.

For t = 1, . . . , s, we will define a
(t)
1 , . . . , a

(t)
kt

such that −1 < a
(t)
1 < · · · <

a
(t)
kt

and αt − a
(t)
i ∈ Z for i = 1, . . . , kt.

Let us write lt = b
(t)
mt + αt + 1. For i such that 1 ≤ i ≤ kt − lt, set

a
(t)
i = αt − kt + i − 1. For i such that kt − lt + 1 ≤ i ≤ kt, we define

x
(t)
i = min{j ∈ {−mt + 1,−mt + 2, . . . , 0} : b

(t)
mt+j + αt − j ≥ kt − i}, and set

a
(t)
i = αt − x

(t)
i − kt + i.

By [5, Theorem 5.3], the induced representation( s∏
t=1

kt∏
i=1

δ([ναt−kt+iρt, ν
a
(t)
i ρt])

)
o σcusp

has a unique irreducible subrepresentation, which is strongly positive and
will be denoted by σsp. It is not hard to see, using Lemma 3.3 and Corollary
3.4, that we have σ = σ̂sp, and ([4]) implies that σ is unitarizable. This ends
the proof.
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